Logical Control of Complex Resource Allocation Systems
نویسنده
چکیده
The problem addressed in this document concerns the coordinated allocation of a finite set of reusable resources to a set of concurrently running processes. These processes execute in a staged manner, and each stage requires a different subset of the system resources for its support. Furthermore, processes will hold upon the resources currently allocated to them until they will secure the necessary resources for their next processing stage. Such resource allocation dynamics currently arise in the context of many flexibly automated operations: from the workflow that takes place in various production shop floors and certain internet-supported platforms that seek to automate various service operations; to the traffic coordination in guidepath-based transport systems like industrial monorail and urban railway systems; to the resource allocation that takes place in the context of the contemporary multi-core computer architectures. From a theoretical standpoint, the resource allocation problems that are abstracted from the aforementioned applications, correspond to the problem of scheduling a stochastic network with blocking and deadlocking effects. This is an area of the modern scheduling theory with very limited results. To a large extent, this lack of results is due to the intricacies that arise from the blocking, and especially the deadlocking effects that take place in these networks, and prevents a tractable analysis of these problems through the classical modeling frameworks. Hence, the departing thesis of the work that is presented in this document, is the decomposition of the aforementioned scheduling problems to (i) a supervisory control problem that will seek to prevent the deadlock formation in the underlying resource allocation dynamics, and (ii) a scheduling problem that will be formulated on the admissible subspace to be defined by the adopted supervisory control policy. Each of these two subproblems can be further structured and addressed using some formal modeling frameworks borrowed, respectively, from the qualitative and the quantitative theory of Discrete Event Systems. At the same time, the above two subproblems possess considerable special structure that can be leveraged towards their effective and efficient solution. The presented material provides a comprehensive tutorial exposition of the current achievements of the corresponding research community with respect to the first of the two subproblems mentioned above. As it will be revealed by this exposition, the corresponding results are pretty rich in their theoretical developments and practically potent. At the same time, it is expected and hoped that the resulting awareness regarding the aforementioned results will also set the stage for undertaking a more orchestrated effort on the second of the two subproblems mentioned above. S. Reveliotis. Logical Control of Complex Resource Allocation Systems. Foundations and Trends R © in Systems and Control, vol. 4, no. 1-2, pp. 1–223, 2017. DOI: 10.1561/2600000010. Full text available at: http://dx.doi.org/10.1561/2600000010
منابع مشابه
Algebraic Deadlock Avoidance Policies for Sequential Resource Allocation Systems ∗
As many contemporary technological applications move to operational modes of more extensive and flexible automation, there is a rising need to design and control the underlying resource allocation not only for efficiency, but also for logical correctness and internal consistency. The material presented in this chapter offers a unifying and comprehensive treatment of a class of policies that hav...
متن کاملDecentralized Routing and Power Allocation in FDMA Wireless Networks based on H∞ Fuzzy Control Strategy
Simultaneous routing and resource allocation has been considered in wireless networks for its performance improvement. In this paper we propose a cross-layer optimization framework for worst-case queue length minimization in some type of FDMA based wireless networks, in which the the data routing and the power allocation problem are jointly optimized with Fuzzy distributed H∞ control strategy ....
متن کاملCycle Time Reduction and Runtime Rebalancing by Reallocating Dependent Tasks
Business Process Management Systems (BPMS) is a complex information system that provides designing, administrating, and improving the business processes. Task allocation to human resources is one of the most important issues which should be managed more efficiently in BPMS. Task allocation algorithms are defined in order to meet the various policies of organizations. The most important of these...
متن کاملResource allocation: the main problem in infection control in intensive care units of hospitals
Background and Purpose: Nosocomial infections, especially those occurring in intensive care units (ICUs), are one of the major health problems in every community. Nosocomial infections are associated with increased mortality rate and high treatment costs. Effective control of these infections essentially depends on the knowledge of healthcare providers regarding the detection and erad...
متن کاملResource allocation based on DEA for distance improvement to MPSS points considering environmental factors
This paper proposes a new resource allocation model which is based on data envelopment analysis (DEA) and concerns systems with several homogeneous units operating under supervision of a central unit. The previous studies in DEA literature deal with reallocating/allocating organizational resource to improve performance or maximize the total amount of outputs produced by individual units. In tho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Foundations and Trends in Systems and Control
دوره 4 شماره
صفحات -
تاریخ انتشار 2017